

THE ELECTROMAGNETIC SPECTRUM

Light

What type of a wave is light?

Light is a little odd, but if anything it is a Transverse Wave

If light is a wave, then what is waving?

It is a fluctuating electric and magnetic field and is often called Electromagnetic Radiation

The Electromagnetic Wave

All waves require a medium to travel through!!!!

..... Except Light!?!? It moves through space propagating itself

How fast is light?

The speed of light represents the Universe's speed limit

All types of light travel at the same speed **3*10⁸ m/s** In a vacuum

Practice

The distance between the State Capitol and Westlake High school is 33.2 miles. How long would a flash of light take to get from one to the other?

$$\begin{array}{rcl} 33.2 \ \mbox{mi} & 1609 \ \mbox{m} \\ & 1 \ \mbox{mi} \end{array} & = 53418.8 \ \mbox{m} \\ v = d/t & \longrightarrow & t = d/v & \longrightarrow & t = 53418.8/(3 \times 10^8) \\ & t = 1.78 \times 10^{-4} s \end{array}$$

If the distance between the Earth and the Sun is 1.49*10^11 m, how long does it take light to move between the two?

$$t = d/v \longrightarrow t = (1.49 * 10^{11})/(3 * 10^8) \begin{vmatrix} t \\ 0 \end{vmatrix}$$

$$t = 496.7s$$

or 8.28 min

Bell Ringer

- A light year is the distance light can travel in a year. How far is this in meters?
- 2. The closest star to us (Proxima Centauri) is 4.24 light years away. How far away is that in meters?
- 3. Earth is 149.6 billion meters away from the Sun. How many times would a spaceship have to travel back and forth between the two to equal the distance between Earth and Proxima Centauri?

The Electromagnetic Spectrum

There is much more to light than what the eye can see!

https://www.youtube.com/watch?v=fpx7hsoYEt4

Chart of the Electromagnetic Spectrum

Size reference	fe	otball fiel	man d	's height	basel	ball	papercl thick	lip ness pape thickne	r cel	bacte	eria Viru	ses	eter mole	ato	m B p	o subaton	nic →
wavelength	1	i.	3	1	1ft	1 cm	1 mm	1 1	1 mil	1,μ	5	Ē	1 nn	1 A	9	1 pr	n
λ (m)	10 ³	10 ²	10	1	10-1	10-2	10-3	3 10-4	10-5	10-6	10-	7 10-8	10-9	10-10	⁰ 10 ⁻¹	10	12
wavenumbe	er					1	1	1000	1					-	1		
(cm ⁻	¹⁾ 10 ⁻⁵	10-4	10-3	10-2	10-	1 1	10	10 ²	10 ³	104	10	⁵ 10 ⁶	107	7 108	10 ⁹	10	10
electron vo	I <u>t ı</u>	1	Е	1	4	12	E.	1	1	1	1		8	E	1	1	
(e\	10-9	10-8	10-7	10-6	10-5	10-4	10-3	³ 10 ⁻²	10-1	1	10	10 ²	10 ³	104	105	10	\$
frequency		1 MHz	1	1	GHz	1	_	1 THz			1 PHz			1 EHz			1 ZHz
(Hz)	105	10 ⁶	107	10 ⁸	10 ⁹	1010	1011	10 ¹²	1013	1014	1015	1016	1017	1018	10 ¹⁹	1020	1021
ds	Radio Spectrum							Terahert	z Inf	Infrared		raviolet		X-ray		Gamma	
Ban	Broadcast and Wireless			reless	Microwave				Far IR Mi	ar IR Mid IR		Near Extreme UV		Soft X-ray			
Sources and Uses of																	
© 2	sed with nerm	ission, Rev2C 6-1				Λ = 3x	10%freq	= 1/(wn*	100) = 1.	24x10*%	VI			50-	R Resea	rch Associ	ation 🐿

Does Light carry Energy?

Yes!!!! Sunlight is warm ... You can power things with photovoltaic cells ... Plants get energy through photosynthesis

So how do you measure the energy light carries? -It all travels at the same speed -It has no mass

For most waves, you measure the energy they carry by looking at the amplitude. Light breaks the rules again!!!

Through this experiment we realize that the energy light carries is not proportional to its amplitude, but rather to its frequency!

Light and Energy

From the Photoelectric Effect we learn: Increase Amplitude = More Electrons Increase Frequency = Higher Energy Electrons

How much energy does Blue light (λ = 460nm) have?

$$c = \lambda * f$$

$$3 * 10^8 = (460 * 10^{-9}) * f$$

$$f = \frac{3 * 10^8}{(460 * 10^{-9})}$$

$$f = 6.52 * 10^{14} \text{ hz}$$

$$E = h * f$$

$$E = (6.63 * 10^{-34}) * (6.52 * 10^{14})$$

$$E = 4.32 * 10^{-19} J$$

Does Light experience a Doppler Shift? YES!!!!!!!

BLUE SHIFT

RED SHIFT

Galaxy velocities

THESE NORTHERN PRECINCTS APPEAR RED, WHICH PROBABLY MEANS THEY'RE MOVING AWAY FROM US, WHEREAS THESE BLUER REGIONS ARE APPROACHING US. I BELIEVE THE DISTRICT MAY BE ROTATING IN SPACE.

MY CAREER AS AN ELECTION ANALYST WAS SHORT-LIVED.